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Abstract. This paper presents and evaluates an approach to flight con-
trol systems using deep reinforcement learning to enhance fault-tolerance
in fixed-wing aircraft. The study explores the Cross-Entropy Methods
(CEM) and Proximal Policy Optimization (PPO) algorithms to develop
a self-learning attitude controller capable of robust operations and adapt-
ing to unexpected failures while maintaining smooth actuator control.
The algorithms demonstrate each, unique traits in terms of trade-off be-
tween trajectory tracking and control smoothness. A stability analysis
shows stable Neural-Network based control. Overall, the trained agents
exceeds the state-of-art on normal flight and on more than six fault
benchmark scenarios.

Keywords: fault-tolerance, flight control, robustness, reinforcement learn-
ing, evolutionary strategies, stability, control smoothness

1 Introduction

Artificial Intelligence (AI) is everywhere. Despite the aviation industry’s strong
safety record, leveraging AI advances can enhance flight controllers capabilities
and further reduce risks. Faults manifest in aircraft systems as sensor errors,
unexpected phenomena, system or structural failures [11]. Mitigating these, re-
quires passive or active control strategies [5, 13], often implemented via gain
schedulers [5] or hardware redundancy. They depend on prior fault knowledge
[13], hence limiting generalization to only known fault types [5, 8]. Reinforcement
Learning (RL), particularly Approximate Dynamic Programming, has shown
promises in advanced flight control, for instance, in F-16 jets [1, 20]. Deep Re-
inforcement Learning (DRL) algorithms like Twin Delayed Deep Determinis-
tic (TD3) [7] and Soft Actor Critic (SAC) [9] demonstrated remarkable fault-
tolerance in [3, 8] without needing prior model dynamics knowledge. However,
on top of RL’s limitations, noisy action command, makes hardware implementa-
tion difficult. Recent focus towards combining RL with Evolutionary Strategies
in [2, 4, 6, 19], is leading to innovative promising optimization algorithms for
fault-tolerant control [8], despite computational and efficiency challenges. This
study builds on the literature, proposing and evaluating frameworks and algo-
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rithms for enhanced fault tolerance and robustness, validated on a high-fidelity
Cessna Citation 500 simulation from PH-LAB 1 [10, 14].

2 Fundamentals

This section states the problem and introduce the learning framework and algo-
rithms used for this study.

2.1 Reinforcement Learning Problem

In traditional reinforcement learning with a Markov Decision Process setup, at
a each time-step and state of a system, an agent applies an action at ∈ Rm to it
which returns the next state and a reward. The agent’s objective is to optimize a
policy mapping states to actions, thereby maximizing cumulative rewards. This
study focuses on optimizing an aircraft’s attitude control, aiming to minimize
tracking errors and ensure action smoothness.

Definition 1. Given a state vector s(t), a control input u(t) and a reference
input vector r(t), the optimization problem is defined by Eqs. 1.

u∗ = argmin
u

∫ tf

t0

Ls(s, u, r) + Lu(u)dt s.t |u| ≤ umax and |∆u| ≤ umax

∆t
(1)

Where Ls minimizes the deviation from the reference trajectory and Lu optimizes
for smooth changes between subsequent control inputs.

2.2 Cross-Entropy Method and Proximal Policy Optimization

CEM is an Estimation of Distribution Algorithm that represents a population
of policies as a distribution using a co-variance matrix. Coupled with TD3 [7], it
forms a Deep Neuro-Evolutionary algorithm known as CEM-RL [16] benefiting
from TD3’s gradient-based policy improvement and CEM’s efficiency to refine
policy parameters effectively, as shown in Fig. 1a.

PPO [17], known for its successful application in robotics, optimizes a clipped
surrogate objective function alongside a value function, balancing the reward
maximization while mitigating large policy updates. The total loss combines the
policy’s expected advantage and the value function’s accuracy, as outlined in
Eqs. 2–3 and Fig. 1b.

LCLIP (θ) = Et[min(
πθ(at|st)
πold(at|st)

Ãt, clip(
πθ(at|st)
πold(at|st)

, 1− ϵ, 1 + ϵ)Ãt)] (2)

LV F (ϕ) = Et[(Vϕ(st)− V (st))
2] (3)

1https://cs.lr.tudelft.nl/citation
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Fig. 1. CEM-TD3 Architecture (a). PPO Learning Architecture (b).

3 Methodology

This section presents the design of the controller and experiment setup which
includes the training and evaluation strategies.

3.1 Aircraft Model and Interface

The aircraft model is a high-fidelity 6-Degrees of Freedom non-linear dynamics
borrowed from PH-LAB by TU Delft [10, 14]. The model is trimmed for specific
flight conditions summarized in table 3.1. The complete state of the aircraft,
denoted by x ∈ IR12, is defined in Eq. 4.

x = [p, q, r, Vtas, α, β, θ, ϕ, ψ,H,Xe, Ye]
T (4)

where Xe, Ye represent the longitudinal and lateral displacements relative to the
trim point.

Name Description

Nominal Trim condition: H=2,000m and Vtas = 90m/s
Iced Wings αmax is reduced by 30% and the CD increased with 0.6

Aft Shifted CG The center of gravity is shifted aft by 0.25 m
Saturated Aileron Aileron deflection clipped at ±1◦

Saturated Elevator Elevator deflection clipped at ±2.5◦

Partial Loss of Elevator Elevator effectiveness coefficient multiplied by 0.3 gain
Jammed Rudder Rudder stuck at 15◦

High Dynamic Pressure Trim conditions: H=2,000m and Vtas = 150m/s
Low Dynamic Pressure Trim conditions: H=10,000m, Vtas = 90m/s
Wind and Sensor Noise models identified from flight tests [8] and isolated from [15]

Table 1. Evaluation Cases and Trim Conditions from [8]
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The controller commands the aircraft’s primary control surfaces, i.e, the ele-
vator, ailerons and rudder, confined within physical limitations [12] and mapped
by Eqs. 6-7. An inner auto-throttle handles thrust [14], while trim tab and flap
deflections are held at zero. In Eqs. 5 the observed states are derived from the
complete state at 100 Hz and augmented with the tracking error.

s := [∆θ,∆ϕ, 0− β, p, q, r] (5)

at := [δe, δa, δr]
T ∈ [−1, 1]3 (6)

u := umin + (at + 1)
umax − umin

2
(7)

The environment returns a reward signal that minimizes the tracking error and
prevents abrupt changes to the control inputs by means of keeping the body
rates low and also using a smoothness metric Sm introduced in [8]. See Fig. 2c.

Definition 2. Given ẋ := [p, q, r]T , δX = [θr − θ, ϕr − ϕ, 0− β], cr = 6
π [1, 1, 4],

a scaling factor, and w1,2,3|
∑
wi = 1 weight coefficients, the reward function is

defined by Eq. 8.

R = −w1

3
||ẋ||1 −

w2

3
||clip(cr · δX,−1, 1)||1 −

2w3

∆T
(Tmax − T ) + Sm (8)

3.2 Experiment Setup

Both algorithms are trained offline on the normal plant dynamics for 2000 steps
per episode. PPO is trained for more than 106 time steps requiring 2 hours, while
CEMTD3 for 100 generations requiring almost 8h with population of up to 50.
All the computations are done on a 12 intel(R) i7-5930K 3.5GHz CPU cores
with NVIDIA GeForce GTX TITAN X graphics computer. An online evalua-
tion framework inspired from [8] is designed for CEM-TD3 while both a Neural
Network (NN) based Fault Detection and Identification unit and a NN-based
filter are developed for the PPO controller. Note that prior training, a hyper-
parameters sweeping was conducted to extract appropriate values for the algo-
rithms. Figures 2a and 2b describe, on a higher level, the process of evaluation
and adaption for the designed control system.

4 Results and Discussion

This section presents and discusses the results of training, evaluation and stabil-
ity analysis of the proposed methods in terms of learning curves, fault-tolerance
and robustness.

4.1 Learning Curves

Figure 3 illustrates the average performance score of the generated population
with respect to the number of generations for CEMTD3 and the episodic reward
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over the time steps for PPO. Indeed each new generation (CEMTD3) outper-
forms its predecessor. The returns are averaged and smoothed across three dif-
ferent seeds and converge towards values comparable to the results reported in
related studies [3, 8, 18, 21]. Also, the smoothness of the actions improves during
the training.

(a) (b)

Fig. 3. (a) CEMTD3’s Population Average Performance Score. (b) PPO’s Episodic
reward

4.2 Fault-Tolerance and Stability

About nine (9) fault and disturbance cases outlined in table 3.1 are used to assess
the agent’s tolerance and adaptation. Figure 4 presents comparative results of
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the proposed algorithm alongside with related works, considering a similar refer-
ence trajectory. Specifically, CEMTD3 shows state-of-the-art action smoothness
in all cases as depicted in fig. 5 exceeding the benchmark results. PPO dominates
in terms of tracking error. However, the jammed rudder environment remains
notably challenging. In addition, a stability analysis was conducted by lineariz-
ing the combined controller-plants to check for the eigen-values and time-series
responses. Again, the systems are stable. Further analyses reveal that the adap-
tation mechanisms in figs. 2 are comparatively efficient in being robust and adap-
tive just as the standalone bare-bone trained controllers. Indeed, with CEMTD3
in fig. 2b, given a database of pre-trained agents which can be updated, the sys-
tem switches to appropriate policies based on a system identification model by
predictively evaluating in parallel the strategies over some time horizon. Switch-
ing between control policies is done via Polyack update mechanism as used in
TD3 [7]. In the PPO adaptation framework, the FDI was pre-trained to detect
failure and to return corrective parameters which are later used by a filter to
smooth out the control inputs.

Fig. 4. Comparison of nMAE between CEMTD3(20,10), CEMTD3(50,25),
CEMTD3(50,10), PPO with the literature TD3 and SERL(50) on evaluation
cases. (Best performing agents). Note: CEMTD3(Population Size, Elite Size)

Moreover, by comparing the inputs between a normal flight and a partial loss
of the elevator in Figure 6, a more accentuate deflection of the elevator signal
is noticed which indicates an involved strategy to address the failure, since in
this case the tail is 70% less efficient. In general, CEM-TD3 generally exhibits
less aggressive control and higher nMAE values across all scenarios, indicating a
more conservative control strategy but with less precision in following the desired
trajectory. PPO appears, on the other hand, to be the most robust system able
to maintain trajectory (nMAE ≤ 2.7%) in almost all tested conditions, but its
more involved control nature must be considered against potential trade-offs like
hardware limits and passenger comfort.



Towards Intelligent Smooth Fault-Tolerant Control 7

Fig. 5. Comparison of Action Policy Smoothness between CEMTD3(20,10),
CEMTD3(50,25), CEMTD3(50,10) with TD3 and SERL(50) on evaluation scenarios.
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Fig. 6. Evaluation Time-Traces of CEMTD3 (a) on Normal Flight , (b) With Partial
Loss of Elevator, and PPO (c) on Normal Flight, (d) With Partial Loss of the Elevator.
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5 Summary and Conclusions

This work combines two bio-inspired frameworks, Deep Reinforcement Learn-
ing (TD3) and Evolutionary Strategy (CEM), resulting in CEM-TD3 alongside
PPO to train controllers on a non-linear fixed-wing aircraft model, aiming at
optimal and smooth attitude control. This study advances the field by improv-
ing action policy smoothness and fault-tolerance. The CEMTD3’s performance,
particularly its balance between tracking accuracy and control smoothness, and
PPO’s robust adaptation across various operational scenarios significantly sur-
pass existing benchmarks.

The growing complexity of autonomous systems requires sophisticated and
adaptable controllers. In fact a model capable of handling unforeseen faults is
invaluable, given the unpredictability of potential scenarios. The improved ac-
tion policy smoothness contributes to system efficiency, particularly in energy
consumption, making more flexible hardware applicability. Overall, these results
represents a step towards integrating AI into fault-tolerant and safety-critical
systems.

Future improvements can focus on expanding the range of fault scenarios
including complex concurrent fault fault conditions. Moreover, enhancing the
online adaptation frameworks with advanced efficient model estimation tech-
niques could offer valuable insights. Finally, validating the results requires real
practical flight tests. Advances in the explainability of NN-based controllers shall
increase trustworthiness and reliability.
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